West Nile virus (WNV) is a flavivirus still commonly found in Africa and the Middle East. It is closely related to the St. Louis encephalitis virus, which has appeared in previous limited epidemics in the United States. The primary mode of WNV transmission to humans is through infected mosquitoes (therefore, classified as an arbovirus). The normal transmission cycle for West Nile virus is from mosquito to bird and back to mosquito. The viral load in humans is too low to infect the mosquito and therefore human transmission is considered a termination point in the transmission cycle for West Nile virus (1).

There has been a significant increase in the number of reported cases of WNV infection in the United States over the past 2 decades (2). The first appearance of WNV in North America occurred in 1999, with encephalitis reported in humans and horses. According to the Centers for Disease Control and Prevention (CDC), there were 62 human cases reported from four states and six deaths occurred in 1999. In 2002, there were 4,156 human cases reported from 44 states and the District of Columbia and 262 deaths occurred in 2002 (2). In 2003 the number of human cases reached 9,858 from 45 states and the District of Columbia with 264 deaths reported (2). In 2009 cases decreased dramatically with only 720 cases of WNV and 32 fatalities reported in the United States with the majority occurring in Colorado, California, and Texas (2). However, case numbers have increased significantly again with 5,674 total cases reported in 2012. Since then the numbers of cases per year have been consistent in the range of 2,200–2,500 (2).

Typically, approximately 80% of those infected with WNV remain asymptomatic. Approximately 20% develop “West Nile fever,” which typically lasts only a few days and is characterized by a mild illness with flu-like symptoms. Approximately 1 in 150 individuals develops central nervous system (CNS) infection characterized by meningitis, encephalitis, or meningoencephalitis. Nationwide, mortality among those who develop meningoencephalitis is approximately 10%.

After initial infection, the virus accesses lymphoid tissues and becomes widely disseminated. Evidence of WNV has been noted in multiple non-neural tissues, including adrenal gland, heart, kidney, liver, and pancreas.

Between August 28 and October 2, 2002, 15 cases of WNV meningoencephalitis or meningitis having onset within 1 month after transfusion of blood products were diagnosed and reported to the CDC (3). Among these, the CDC determined that transmission via blood products was “highly likely” in several cases. On September 25, 2002, the CDC reported a case of possible transmission of WNV through organ transplantation (4). In this case, four organ recipients from a single donor all developed clinical WNV infection, and the donor’s blood at time of organ harvest contained WNV sequences (5–7). On October 4, 2002, the CDC reported a case of possible transmission of WNV through breastfeeding (8). On December 20, 2002, the CDC reported a case of transplacental WNV transmission and fetal infection (9), and two cases of laboratory-acquired WNV infections attributed to percutaneous inoculation (10).

The Food and Drug Administration (FDA) has issued guidance to the blood industry, recommending that a potential blood donor with the medical diagnosis or symptoms...
suggestive of WNV be deferred until 14 days after the condition is resolved or 28 days from the onset of symptoms, whichever is later (3).

The FDA has cleared two tests to be used as screening tests for WNV (11, 12). The first test, IgM Capture ELISA, reportedly can correctly identify an antibody in up to 90%–99% of WNV disease cases. However, because antibody detection is not always specific, the test is considered presumptive and should be confirmed by further testing (11). Nucleic acid test (NAT) detects the genetic material of the virus and can identify early infection in the donor before antibodies are produced (12) and are recommended for WNV screening (3).

It is acknowledged that there are significant limitations with symptom screening for WNV. These include the high incidence of asymptomatic cases as well as the fact that symptoms typically follow the viremic period (the time period presumably most associated with transmission risks). An additional issue is that WNV infection in the United States has exhibited a seasonal pattern. It is not known (nor easily predicted from other flaviviral outbreaks) whether the number of reported WNV cases will continue to accelerate during the expected season (late summer through early fall) each year.

Despite the recent introduction of WNV screening tests, a number of factors, including test characteristics (sensitivity, specificity, positive predictive value, negative predictive value), anticipated clinical benefits, and costs, need to be carefully evaluated before any global recommendations for WNV testing in reproductive medicine can be offered.

SUMMARY AND CONCLUSIONS

- Although there is currently no definitive evidence linking WNV transmission with reproductive cells, it is recommended that practitioners defer gamete donors who have confirmed or suspected WNV infections until 14 days after the condition is resolved or 28 days from the onset of symptoms, whichever is later.
- Good donor practice would suggest that donors who are not in good health, including those with recent significant fever and flu-like illnesses, as well as those with recent viral meningitis, encephalitis, or meningoencephalitis episodes, be similarly deferred.

Acknowledgments: This report was developed under the direction of the Practice Committees of the American Society for Reproductive Medicine and Society for Assisted Reproductive Technology as a service to its members and other practicing clinicians. Although this document reflects appropriate management of a problem encountered in the practice of reproductive medicine, it is not intended to be the only approved standard of practice or to dictate an exclusive course of treatment. Other plans of management may be appropriate, taking into account the needs of the individual patient, available resources, and institutional or clinical practice limitations. The Practice Committee and the Board of Directors of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology have approved this report.

This document was reviewed by ASRM members and their input was considered in the preparation of the final document. The following members of the ASRM Practice Committee participated in the development of this document. All Committee members disclosed commercial and financial relationships with manufacturers or distributors of goods or services used to treat patients. Members of the Committee who were found to have conflicts of interest based on the relationships disclosed did not participate in the discussion or development of this document.

Samantha Pfeifer, M.D.; Samantha Butts, M.D., M.S.C.E.; Daniel Dumesc, M.D.; Gregory Fossum, M.D.; Clarisa Gracia, M.D., M.S.C.E.; Andrew La Barbera, Ph.D.; Jennifer Merser-eau, M.D.; Randall Odem, M.D.; Richard Paulson, M.D.; Alan Penzias, M.D.; Margareta Pisarska, M.D.; Robert Rebar, M.D.; Richard Reindollar, M.D.; Mitchell Rosen, M.D.; Jay Sandlow, M.D.; Michael Vernon, PhD; Eric Widra, M.D.

REFERENCES