Current clinical irrelevance of luteal phase deficiency: a committee opinion

Practice Committee of the American Society for Reproductive Medicine
American Society for Reproductive Medicine, Birmingham, Alabama

Luteal phase deficiency (LPD) has been described in healthy normally menstruating women and in association with other medical conditions. Although progesterone is important for the process of implantation and early embryonic development, LPD, as an independent entity causing infertility, has not been proven. This document replaces the document by the same name, last published in 2012 (Fertil Steril 2012;98:1112–7). (Fertil Steril® 2015;103: e27–e32. ©2015 by American Society for Reproductive Medicine.)

Discuss: You can discuss this article with its authors and with other ASRM members at http://fertstertforum.com/asrmpracom-luteal-phase-deficiency/

Maintenance of pregnancy requires production of progesterone by the corpus luteum after ovulation and during the early first trimester until placental function is established. Removal of the corpus luteum before the development of adequate placental function results in spontaneous pregnancy loss (1). Given the importance of ovarian progesterone production to implantation and early pregnancy, the potential for ovarian inadequacy as a cause of infertility or pregnancy failure seems plausible. Studies in support of the need for adequate progesterone during the luteal phase (2) suggest that cycles in which conception occurs have a more rapid rise of progesterone and higher mid-luteal estrogen and progesterone levels compared with cycles in which there is no conception. However, similarly increased luteal phase progesterone levels have been observed in cycles with normal and biochemical pregnancies, suggesting that pregnancy losses may result from causes other than ovarian hormonal deficiency (3). Delayed implantation has been associated with a higher rate of pregnancy loss, although the delayed implantation was more likely a result of an embryonic problem with inadequate early hCG production, rather than an inappropriate ovarian response (4).

Given the importance of the luteal phase in the establishment of a normal pregnancy, luteal phase deficiency (LPD) has been described as a condition in which endogenous progesterone is not sufficient to maintain a functional secretory endometrium and allow normal embryo implantation and growth. The condition was first described in 1949 (5). Controversy regarding the clinical significance of LPD is due in part to the lack of a reliable test to diagnose this disorder. Luteal phase deficiency has purportedly been associated with infertility (6, 7); first-trimester pregnancy loss (8); short cycles (9–12); premenstrual spotting (13); anorexia, starvation, and eating disorders (14); excessive exercise (15); stress (16, 17); obesity and polycystic ovary syndrome (PCOS) (18); endometriosis (19); aging (20); inadequately treated 21-hydroxylase deficiency (21); thyroid dysfunction and hyperprolactinemia (22); ovulation stimulation alone (23); ovulation induction with or without gonadotropin-releasing agonists; and assisted reproductive technology (ART) (24). Luteal phase deficiency has been shown to occur during the postpartum period, with significant weight loss or exercise (25), and in random cycles of normally menstruating women (11). Although there appears to be an association with infertility, it has not been established that persistent LPD is a cause of infertility. Moreover, LPD is only clinically relevant if it is consistently present in most cycles. This report addresses controversies regarding the diagnosis and potential treatment of luteal inadequacy.

MEDICAL CONDITIONS WITH POTENTIAL IMPACT ON LUTEAL PHASE FUNCTION

The pathophysiology of luteal inadequacy may include several different mechanisms that ultimately affect endometrial development. The “short luteal phase” was initially described as an interval of ≤8 days from the luteinizing hormone (LH) peak to the onset of menstrual flow (11). The short luteal phase has been associated with low follicular follicle-stimulating hormone
hypothalamic dopamine and opioid peptide levels (33, 34). GnRH neuronal prolactin receptors or indirectly by increasing hyperprolactinemia can inhibit GnRH secretion directly by acting on hypothyroidism may cause hyperprolactinemia by stimulating the increased secretion of thyrotropin-releasing hormone in the hypothalamic-pituitary-ovarian axis. Thyroid and prolactin disorders also may disrupt GnRH secretion and alter the hypothalamic-pituitary-ovarian axis. The increased secretion of thyrotropin-releasing hormone in hypothryoidism may cause hyperprolactinemia by stimulating lactotrope prolactin production and secretion. Hyperprolactinemia can inhibit GnRH secretion directly by acting on GnRH neuronal prolactin receptors or indirectly by increasing hypothalamic dopamine and opioid peptide levels (33, 34).

Abnormalities in gonadotropin-releasing hormone (GnRH), FSH, and LH pulsatility may be found in recovery from hypothalamic amenorrhea and may result in diminished luteal estrogen and progesterone secretion (15, 29–31). Diminished LH pulsatility with resulting abnormal progesterone secretion may also be problematic in ovulation induction cycles in women with hypothalamic amenorrhea (31, 32).

Thyroid and prolactin disorders also may disrupt GnRH secretion and alter the hypothalamic-pituitary-ovarian axis. The increased secretion of thyrotropin-releasing hormone in hypothyroidism may cause hyperprolactinemia by stimulating lactotrope prolactin production and secretion. Hyperprolactinemia can inhibit GnRH secretion directly by acting on GnRH neuronal prolactin receptors or indirectly by increasing hypothalamic dopamine and opioid peptide levels (33, 34).

Other conditions that have been associated with altered luteal progesterone levels include renal transplantation (35), increased beta-endorphin levels (36), and lactation (37). Because conditions that alter normal gonadotropin secretion impair follicular development and ultimately corpus luteum function, resultant changes in the amount and duration of luteal sex steroid secretion may compromise endometrial development. Presumably, correcting these underlying conditions would correct the abnormal luteal estrogen and progesterone secretion.

Obesity has been associated with a reduction in fertility and increased pregnancy loss rate (38). This negative impact is particularly evident in the morbidly obese. A study evaluated LH pulsatility and urinary progesterone metabolites in obese women compared with normal-weight control subjects (39). As with anorexic women, there was an alteration of LH pulsatility (here a reduction in LH pulse amplitude) and a reduction in luteal-phase pregnanediol glucuronide (the major metabolite of progesterone) excretion. Whether this abnormality contributes to lowered fecundity rates is unknown at this time.

Obesity has been associated with a reduction in fertility and increased pregnancy loss rate (38). This negative impact is particularly evident in the morbidly obese. A study evaluated LH pulsatility and urinary progesterone metabolites in obese women compared with normal-weight control subjects (39). As with anorexic women, there was an alteration of LH pulsatility (here a reduction in LH pulse amplitude) and a reduction in luteal-phase pregnanediol glucuronide (the major metabolite of progesterone) excretion. Whether this abnormality contributes to lowered fecundity rates is unknown at this time.

Ovarian aging also has been associated with abnormalities in luteal phase function. Studies have demonstrated progesterone production and, in addition, deficiencies in luteal phase progesterone and estradiol metabolites in women of late reproductive age (40, 41). Whether these abnormalities contribute to lower pregnancy rates and higher loss rates associated with aging is unclear.

During cycles in which in vitro fertilization is performed, the luteal phase may be abnormal. Cycles using both GnRH agonists and antagonists have been associated with deficient luteal phase hormonal production. GnRH agonists appear to cause luteal phase inadequacy and subfertility by prolonged suppression of pituitary LH secretion (i.e., suppression occurs up to 3 weeks after down-regulation is achieved) (42–44). In the case of GnRH antagonists, significant reductions in pregnancy rates also have been identified (45). Although the recovery of LH production from the pituitary is quite rapid after cessation of GnRH antagonists, a clear negative clinical impact in the luteal phase may be seen. It has been hypothesized that endogenous LH may be suppressed by the high gonadotropin levels in the stimulatory phase (45). The result of inadequate LH stimulation of the corpus luteum may lead to diminished progesterone secretion and premature luteolysis (24, 46). Interestingly, adding GnRH agonists to superovulation and intrauterine insemination cycles or gonadotropin ovulation induction cycles for PCOS did not reduce the pregnancy rate, reduce luteal estrogen or progesterone levels, or alter endometrial dating in several studies (47, 48).

ARE THERE DIAGNOSTIC CRITERIA FOR INADEQUATE LUTEAL FUNCTION?

Diagnostic tests are influenced by and based on the following physiologic observations:

1. Normal luteal phase length is relatively fixed at 12–14 days.
2. Progesterone levels peak in nonpregnancy cycles 6–8 days after ovulation.
3. Progesterone is secreted in pulses.
4. The endometrial response is a reflection of the follicular-phase estrogen and the luteal-phase estrogen and progesterone.
5. Once implantation occurs, progesterone secretion by the corpus luteum depends on rising human chorionic gonadotropin (hCG) levels.
6. Failure of hCG levels to increase directly causes corpus luteum failure and a decline in progesterone levels (49).

The different methods proposed for diagnosing LPD include, in order of increasing invasiveness, basal body temperature (BBT) charting, urinary LH surge detection kits, serum progesterone levels, and endometrial biopsy. Because of its inaccuracy and because of the inconvenience to patients, the measurement of BBT is of historical significance only and should be discouraged.

The addition of urinary LH surge detection and monitoring of luteal length substantiates ovulation and adequate luteal length. An interval of 11–13 days from LH surge to menstruation is considered normal, while an interval of 8 or fewer days from the time of an LH surge is considered evidence of a short luteal phase (11, 50). However, as noted, a short luteal phase may occur in healthy young women (11).

Progesterone Levels

Another common method used for the diagnosis of LPD is measurement of serum progesterone levels. Progesterone is secreted in pulses that reflect LH pulses, and levels may fluctuate up to eightfold within 90 minutes (51). In the absence of pregnancy, progesterone levels peak 6 to 8 days after ovulation (49). To determine peak progesterone levels, it is necessary to determine the time of ovulation, but this too may be problematic. Although urine LH tests may be used to determine ovulation, a false-positive LH surge is found when testing urine in >7% of cycles in women with regular menstrual cycles (52).
Unfortunately, there is no standard characterization of progesterone secretion during the luteal phase in normal fertile women (53). No minimum serum progesterone concentration defines “fertile” luteal function. Furthermore, corpus luteum function varies from cycle to cycle in normal fertile women. Therefore, random serum progesterone levels are not a valid clinical diagnostic tool to evaluate luteal phase adequacy. Once pregnancy has been established, the corpus luteum is stimulated by hCG to produce progesterone. Progesterone levels have some value in predicting if the pregnancy is nonviable or extraterine (54). Because low progesterone levels in early pregnancy likely reflect abnormal hCG stimulation of the corpus luteum by a nonviable or extraterine pregnancy, a low progesterone level obtained at the time of, or after, diagnosis of early pregnancy should not be used to initiate therapy with exogenous progesterone.

Endometrial Biopsy

Abnormalities of endometrial maturation have been viewed as the “gold standard” to diagnose luteal inadequacy (55). In theory, whether the maturation is delayed by inadequate ovarian hormone secretion or is delayed because of an intrinsic endometrial abnormality, luteal phase inadequacy is thought to prevent normal implantation or early placent development (56). Studies that have defined the diagnostic criteria for LPD have relied on the traditional microscopic appearance of luteal-phase endometrial development (55). However, implantation is associated with changes in a number of factors that have been incompletely described, including steroid receptors, structural proteins, growth factors, cytokines, receptors, and pinopodes (57–62). Therefore, defining clinically applicable criteria for normal luteal-phase endometrial development is complex and evolving.

Many have considered the endometrial biopsy to be the most important diagnostic test to evaluate for LPD (56). However, prospective, blinded, randomized clinical trials (RCTs) suggest that the endometrial biopsy is an imprecise tool for differentiating fertile women from women with LPD (infertility). In two randomized trials of healthy, regularly menstruating, fertile women, endometrial maturation was delayed in up to 25% of biopsy cycles, the variability for individuals from one cycle to the next was high, and there was high variability in histologic dating by various reviewers (63, 64). In a multicenter RCT of 847 women with regular menstrual cycles, 49% of mid-luteal and 35% of late-luteal biopsies were “out of phase,” and there was no difference when comparing fertile and infertile women (65). Together, these reports confirm that the endometrial biopsy for histologic endometrial dating is not a valid clinical diagnostic tool for the identification of an infertile population or for diagnosis or treatment of LPD.

Consistent with these findings is a novel study designed to test the hypothesis that low progesterone levels would lead to inadequate endometrial development (66). In this study, two doses of intramuscular progesterone were given on the background of supplemental estradiol following suppression of ovarian function with a GnRH agonist. Both “model” cycles were compared with the natural cycle in the study participants. When progesterone levels were lowered to 3–10 ng/mL, there was no impact on histologic dating.

Because the histologic evaluation of the endometrium is so imprecise by itself, many additional biochemical, morphologic, or molecular markers of endometrial function have been proposed to reflect when or if the endometrium is receptive to implantation (56, 62). However, no marker of proposed receptivity has been validated to confirm its accuracy in distinguishing normal fertile women from infertile women. Interestingly, in the study described above (66), endometrial protein expression appeared to differ in the subjects with lowered progesterone replacement, suggesting a potentially more subtle deficiency. At this time, however, molecular markers of receptivity remain experimental and are not valid clinical diagnostic tools.

In summary, currently there is no reproducible, pathophysiologically relevant, and clinically practical standard to diagnose LPD and distinguish fertile from infertile women. The roles of BBT, urinary LH detection kits, luteal progesterone levels, endometrial biopsy, and other diagnostic studies have not been established, and performance of these tests cannot be recommended.

IF DIAGNOSIS IS NOT POSSIBLE, IS TREATMENT FOR LUTEAL INADEQUACY EVER APPROPRIATE?

The first approach to treatment of potential luteal inadequacy is the correction of any underlying condition. If no underlying abnormality (e.g., hypothalamic dysfunction, thyroid dysfunction, or hyperprolactinemia) is identified, treatment becomes empiric and is based on limited reliable data. Treatment has been given empirically to promote endometrial maturation, to enhance endometrial receptivity, and to support implantation and development of an early pregnancy. Strategies include supplemental progesterone, progesterone plus estrogen, hCG in the luteal phase, or ovulation induction with clomiphene or gonadotropins.

Ovulation Induction

Use of agents that induce ovulation may improve the fertility of subfertile women. The biologic plausibility of this hypothesis is based on the physiologic continuity between the developing follicle and the corpus luteum. Improved preovulatory follicular dynamics should improve corpus luteum function. However, two problems must be addressed before accepting a cause-effect relationship between use of agents that induce ovulation and improved corpus luteum function and fertility outcomes. The first problem is linked to the definition of luteal insufficiency. By necessity, luteal insufficiency has been defined by surrogate endpoints, such as progesterone deficiency or out-of-phase endometrium, in ovulation induction studies. To date, all attempts to link poor fertility outcomes to these surrogate endpoints have been unsuccessful (67–70). Therefore, the only practical way to define or diagnose LPD is to demonstrate that luteal support alone increases pregnancy and live birth rates. There have been few studies to determine if agents that induce ovulation “treat” LPD by...
improving the quality or quantity of follicles. One of the few studies to determine if use of agents that induce ovulation “treated” LPD by improving the quality of the follicle or increasing the quantity of follicles prospectively evaluated 18 women with prior out-of-phase endometrial biopsy in clomiphene cycles [71]. Luteal phase inadequacy was corrected by biopsy criteria in 8/10 women with more than one preovulatory follicle and in 2/8 women with a single follicle. It can be argued that “ovulation induction strategies” improve fertility by inducing multiple ovulation and not by correcting LPD.

Progestrone

Supplementation of progesterone can be given orally, vaginally, or by the intramuscular (IM) route. Currently, there is no evidence that progesterone is beneficial in natural unstimulated cycles. The question of whether supplementation in the face of reproductive aging may be appropriate has not been addressed in a rigorous scientific manner.

Currently, the only well documented indication for supplemental vaginal or IM progesterone is for the improvement of ART outcomes in GnRH agonist/antagonist stimulation cycles (42, 43, 72). Intramuscular progesterone is associated with the highest serum levels, and vaginal progesterone increases endometrial tissue levels (73). It has been agreed that oral progesterone should not be used for luteal support; only ~10% of micronized progesterone is absorbed intact through the gastrointestinal tract, and pregnancy rates are lower in ART cycles in which oral progesterone is administered compared with those in which vaginal or IM progesterone is used (42, 43, 74). Progesterone supplementation should be administered until placental progesterone production is adequate, around 8–10 weeks of gestation.

hCG

Luteal supplementation with hCG stimulates the ovaries (or corpora lutea) to boost production of endogenous progesterone and estradiol in GnRH agonist/antagonist ART cycles. ART delivery rates are higher and spontaneous abortion rates are lower when supplemental hCG is compared with unstimulated GnRH agonist/antagonist cycles (42, 43). However, the incidence of moderate or severe ovarian hyperstimulation syndrome (OHSS) is significantly higher when supplemental hCG is administered. Low-dose hCG (500 IU every other day) may provide luteal support with minimal risk of inducing OHSS [75]. Because of the clinical equivalence with IM progesterone and higher incidence of side effects with hCG, luteal progesterone is generally preferred in GnRH agonist/antagonist IVF cycles.

Once pregnancy is established, supplemental hCG is not beneficial. An RCT of supplemental hCG in 183 women with first-trimester vaginal bleeding and ultrasound-confirmed cardiac activity found that the miscarriage rate was 11% with placebo and 12% with hCG [76].

SUMMARY

- Abnormal luteal function may occur as the result of a medical condition (e.g., elevated prolactin, abnormal thyroid function), and infertile women suspected of having one of these disorders (e.g., irregular menses, galactorrhea) should be evaluated and appropriately treated for identified conditions.
- No diagnostic test for luteal phase insufficiency has been proven to be reliable in a clinical setting. The roles of BBT, urinary LH detection kits, luteal progesterone levels, endometrial biopsy, and other diagnostic studies have not been established, and performance of these tests cannot be recommended.
- No treatment for luteal phase insufficiency has been shown to improve pregnancy outcomes in natural, unstimulated cycles.
- Luteal support after ART procedures with progesterone or hCG improves pregnancy outcomes, but hCG increases the risk of OHSS.
- There is no proven role in adding progesterone or hCG for luteal support once a pregnancy has been established. Use of supplemental progesterone in a non-ART cycle beyond the time of expected menses (i.e., 2 weeks after ovulation) is not proven to be beneficial.

CONCLUSION

Although progesterone is important for the process of implantation and early embryonic development, LPD as an independent entity causing infertility has not been proven.

Acknowledgments: This report was developed under the direction of the Practice Committee of the American Society for Reproductive Medicine as a service to its members and other practicing clinicians. Although this document reflects appropriate management of a problem encountered in the practice of reproductive medicine, it is not intended to be the only approved standard of practice or to dictate an exclusive course of treatment. Other plans of management may be appropriate, taking into account the needs of the individual patient, available resources, and institutional or clinical practice limitations. The Practice Committee and the Board of Directors of the American Society for Reproductive Medicine have approved this report.

The following members of the ASRM Practice Committee participated in the development of this document. All Committee members disclosed commercial and financial relationships with manufacturers or distributors of goods or services used to treat patients. Members of the Committee who were found to have conflicts of interest based on the relationships disclosed did not participate in the discussion or development of this document.

Samantha Pfeifer, M.D.; Richard Reindollar, M.D.; Rebecca Sokol, M.D.; Clarisa Gracia, M.D., MSCE; Robert Rebar, M.D.; Andrew La Barbera, Ph.D.; Randall Odem, M.D.; Daniel Dumesic, M.D.; Margareta Pisarska, M.D.; Samantha Butts, M.D.; Eric Widra, M.D.; Gregory Fossum, M.D.; Jay Sandlow, M.D.; Mitchell Rosen, M.D.; and Michael Vernon, Ph.D.

REFERENCES

17. Xia E, Xia-Zhang L, Ferin M. Inadequate luteal function is the initial clinical deficiency in a 12-day stress model that includes a psychogenic component in the rhesus monkey. J Clin Endocrinol Metab 2002;87:2232–7.

